
Default

Default ii

COLLABORATORS

TITLE :

Default

ACTION NAME DATE SIGNATURE

WRITTEN BY December 25, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Default iii

Contents

1 Default 1

1.1 games.library . 1

1.2 games.library/Init_GPI . 4

1.3 games.library/Remove_GPI . 5

1.4 games.library/Read_Mouse . 6

1.5 games.library/Read_JoyPort . 7

1.6 games.library/Read_JoyStick . 8

1.7 games.library/Read_Analogue . 9

1.8 games.library/Read_JoyPad . 10

1.9 games.library/Read_SegaPad . 11

1.10 games.library/Read_Key . 11

1.11 games.library/FastRandom . 12

1.12 games.library/SlowRandom . 13

1.13 games.library/Wait_LMB . 13

1.14 games.library/Wait_Fire . 14

1.15 games.library/Wait_Time . 14

1.16 games.library/Wait_VBL . 15

1.17 games.library/Wait_OSVBL . 15

1.18 games.library/Wait_RastLine . 16

1.19 games.library/Add_InputHandler . 16

1.20 games.library/Rem_InputHandler . 17

1.21 games.library/Add_Interrupt . 17

1.22 games.library/Rem_Interrupt . 18

1.23 games.library/SmartLoad . 18

1.24 games.library/QuickLoad . 19

1.25 games.library/SmartUnpack . 20

1.26 games.library/SmartSave . 21

1.27 games.library/SetUserPri . 21

1.28 games.library/SetGMSPrefs . 21

1.29 games.library/LoadPic . 22

Default iv

1.30 games.library/UnpackPic . 22

1.31 games.library/GetPicInfo . 23

1.32 games.library/AllocMemBlock . 23

1.33 games.library/FreeMemBlock . 24

1.34 games.library/Add_Screen . 25

1.35 games.library/Delete_Screen . 28

1.36 games.library/Show_Screen . 29

1.37 games.library/Hide_Screen . 29

1.38 games.library/ReturnToOS . 30

1.39 games.library/AutoOSReturn . 30

1.40 games.library/SwapBuffers . 31

1.41 games.library/Remake_Screen . 31

1.42 games.library/Move_Picture . 32

1.43 games.library/Reset_Picture . 33

1.44 games.library/B12_FadeToBlack . 33

1.45 games.library/B12_FadeToWhite . 34

1.46 games.library/B12_FadeToPalette . 35

1.47 games.library/B12_FadeToColour . 35

1.48 games.library/24BIT_FadeToBlack . 36

1.49 games.library/24BIT_FadeToWhite . 36

1.50 games.library/B24_FadeToPalette . 37

1.51 games.library/B24_FadeToColour . 38

1.52 games.library/Change_Colours . 38

1.53 games.library/Blank_Colours . 39

1.54 games.library/Init_RasterList . 39

1.55 games.library/Update_RasterList . 41

1.56 games.library/Update_RasterLines . 42

1.57 games.library/Update_RasterCommand . 42

1.58 games.library/Update_RasterCommands . 43

1.59 games.library/Remove_RasterList . 43

1.60 games.library/Hide_RasterList . 44

1.61 games.library/Show_RasterList . 44

1.62 games.library/Init_Sprite . 45

1.63 games.library/Update_Sprite . 47

1.64 games.library/Move_Sprite . 48

1.65 games.library/Hide_Sprite . 48

1.66 games.library/Update_SpriteList . 49

1.67 games.library/Hide_SpriteList . 49

1.68 games.library/Remove_AllSprites . 50

Default v

1.69 games.library/Return_AllSprites . 50

1.70 games.library/ . 51

1.71 games.library/AllocAudio . 51

1.72 games.library/FreeAudio . 52

1.73 games.library/InitSound . 52

1.74 games.library/FreeSound . 54

1.75 games.library/CheckChannel . 55

1.76 games.library/PlaySound . 55

1.77 games.library/PlaySoundDACx . 55

1.78 games.library/PlaySoundPriDACx . 56

1.79 games.library/PlaySoundPri . 57

1.80 games.library/ . 57

Default 1 / 58

Chapter 1

Default

1.1 games.library

Name: GAMES.LIBRARY AUTODOC
Version: 0.3 Beta.
Date: 06 September 1996
Author: Paul Manias
Copyright: DreamWorld Productions, 1996. All rights reserved.
Notes: This document is still being written and will contain errors

in a number of places. The information within cannot be
treated as official until this autodoc reaches version 1.0.

GAMES.LIBRARY

Add_InputHandler()

Add_Interrupt()

AllocMemBlock()

FreeMemBlock()

FastRandom()

GetPicInfo()

Init_GPI()

LoadPic()

QuickLoad()

Read_Mouse()

Read_JoyPort()

Read_JoyStick()

Read_JoyPad()

Default 2 / 58

Read_SegaPad()

Read_Analogue()

Read_Key()

Rem_InputHandler()

Rem_Interrupt()

Remove_GPI()

SetGMSPrefs()

SetUserPri()

SlowRandom()

SmartLoad()

SmartSave()

SmartUnpack()

UnpackPic()

Wait_LMB()

Wait_Fire()

Wait_Time()
SCREENS.GPI

Add_Screen()

Delete_Screen()

Show_Screen()

Hide_Screen()

ReturnToOS()

AutoOSReturn()

SwapBuffers()

Wait_VBL()

Wait_OSVBL()

Wait_RastLine()

Remake_Screen()

Move_Picture()

Default 3 / 58

Reset_Picture()

B12_FadeToBlack()

B12_FadeToWhite()

B12_FadeToPalette()

B12_FadeToColour()

B24_FadeToBlack()

B24_FadeToWhite()

B24_FadeToPalette()

B24_FadeToColour()

Change_Colours()

Blank_Colours()

Init_RasterList()

Update_RasterList()

Update_RasterLines()

Update_RasterCommand()

Update_RasterCommands()

Remove_RasterList()

Hide_RasterList()

Show_RasterList()

Init_Sprite()

Update_Sprite()

Move_Sprite()

Hide_Sprite()

Update_SpriteList()

Hide_SpriteList()
Remove_AllSprites()

Return_AllSprites()

BLITTER.GPI (Work in progress, Ideas please)

SOUND.GPI

AllocAudio()

Default 4 / 58

FreeAudio()

InitSound()

FreeSound()

CheckChannel()

PlaySound()

PlaySoundDAC1()

PlaySoundDAC2()

PlaySoundDAC3()

PlaySoundDAC4()

PlaySoundPri()

PlaySoundPriDAC1()

PlaySoundPriDAC2()

PlaySoundPriDAC3()

PlaySoundPriDAC4()
SetVolume()

FadeVolume()
InitPlayer()
PlayMOD()
StopPlayer()

VECTORS.GPI
Ideas Please!

NETWORK.GPI
Ideas Please!

DEBUG.GPI
Ideas Please!

VOXEL.GPI? Ideas/Code?

1.2 games.library/Init_GPI

games.library/Init_GPI

NAME Init_GPI - Load in a GPI and initialise it for function calls.

SYNOPSIS
GPIBase = Init_GPI (GPINumber).

d0 d0

Default 5 / 58

APTR Init_GPI(UWORD GPI_ID);

FUNCTION
Loads in a GPI and initialises it ready for function calls.
Currently there are three GPI’s that require initialisation if you
want to use them:

Debug.GPI
Network.GPI
Vectors.GPI

If GPIBase returns with an address pointer then the initialisation
was successful and the GPI’s functions are ready to use. If the
function fails then it will return with NULL.

NOTE The GPIBase is the same as a library base pointer. Because of this
it is perfectly legal to make direct calls to the GPI itself.
However you should only do this if you have very good reason to, eg
if you are developing a new GPI.

As the Debug, Network and Vector GPI’s are not present yet, this
function is a bit useless for the moment :-)

INPUTS GPINumber - A recognised GPI ID Number, which is one of:

GPI_SCREENS = 0
GPI_BLITTER = 4
GPI_SOUND = 8
GPI_NETWORK = 12
GPI_VECTORS = 16
GPI_DEBUG = 20
GPI_ANIM = 24
GPI_REKO = 28
GPI_TEXT = 32

RESULT GPIBase - Poniter to the GPIBase or NULL if error.

SEE ALSO

Remove_GPI

1.3 games.library/Remove_GPI

games.library/Remove_GPI

NAME Remove_GPI -- Remove a GPI that was previously initialised.

SYNOPSIS
Remove_GPI(GPIBase)

a0

ULONG Remove_GPI(APTR GPIBase);

Default 6 / 58

FUNCTION
Informs the Games.Library that you no longer wish to use the
specified GPI’s functions. You cannot make any calls to the GPI
after removing it.

INPUTS GPIBase - Pointer to a valid GPIBase returned from Init_GPI().

SEE ALSO

Init_GPI

1.4 games.library/Read_Mouse

games.library/Read_Mouse

NAME Read_Mouse -- Gets the current mouse co-ordinates and button states.

SYNOPSIS
ZBXY = Read_Mouse(PortName)

d0 d0

ULONG Read_Mouse(UWORD PortName);

FUNCTION
Reads the mouse port and returns any changes in its co-ordinates.
The status of the mouse is returned in ZXBYStatus (a packed state).
If the user was not using the mouse, then ZBXYStatus will return a
NULL value.

The first time you call this function it may return nonsense values
in the X/Y directions. Therefore you must call it in the
initialisation section of your program before using it in the rest
of your program.

This function also requires that the input handler has already been
installed by GMS (Show_Screen() will do this for you).

JoyPorts 3 and 4 are not supported by this function.

EXAMPLE If you are having trouble unpacking the ZBXYStatus value in C, here
is some code to get the X, Y and Z values.

XPos += (BYTE)(ZBXY>>8);
YPos += (BYTE)ZBXY;
ZPos += (BYTE)(ZBXY>>24);

To read the left mouse button:

if (ZBXY&MB_LMB) {
/* LeftMouse pushed... */

}

INPUT PortName = JPORT1 or JPORT2.

Default 7 / 58

RESULT ZBXY - Contains changes in direction and button states.

BYTE | BIT RANGE | DATA
-----+-----------+--------------------------------------

1 | 0 - 7 | Y Direction
2 | 8 - 15 | X Direction
3 | 16 - 23 | Button status bits.
4 | 23 - 31 | Z Direction (currently not supported)

Button status bits are:

MB_LMB = 16
MB_RMB = 17
MB_MMB = 18

SEE ALSO
games/gamesbase.i

1.5 games.library/Read_JoyPort

games.library/Read_JoyPort

NAME Read_JoyPort -- Reads any joystick device in a given joyport.

SYNOPSIS
JoyStatus = Read_JoyPort(PortName, ReturnType)

d0 d0 d1

ULONG Read_JoyPort(UWORD PortName, UWORD ReturnType)

FUNCTION
Reads the joyport and returns its status in the required format,
regardless of what playing device is plugged in. Currently
supported devices are standard JoySticks, Analogue JoySticks,
SegaPads, CD32 JoyPads, the mouse, and the keyboard.

Unlike the lowlevel.library equivalent of this function, this
version is much faster and does not need to evaluate what device is
currently plugged in. It simply reads the specified joy type from
GMSPrefs and jumps to the correct routine.

Future devices may be added to this function - this will be
transparent to your program so that you can support devices that do
not exist yet.

INPUTS PortName - JPORT1, JPORT2, JPORT3 or JPORT4.
ReturnType - JT_SWITCH: JoyStatus returns with switched bitflags.

JT_ZBXY: JoyStatus returns with the ZBXY format.

RESULT JoyStatus - Status of the JoyPort in one of the following two
formats:

For JT_SWITCH : JS_LEFT = 0
JS_RIGHT = 1
JS_UP = 2

Default 8 / 58

JS_DOWN = 3
JS_ZIN = 4
JS_ZOUT = 5
JS_FIRE1 = 6
JS_FIRE2 = 7
JS_PLAY = 8
JS_RWD = 9
JS_FFW = 10
JS_GREEN = 11
JS_YELLOW = 12

For JT_ZBXY :

BYTE | BIT RANGE | DATA
-----+-----------+--------------------------------------

1 | 0 - 7 | Y Direction
2 | 8 - 15 | X Direction
3 | 16 - 23 | Button status bits.
4 | 23 - 31 | Z Direction (currently not supported)

JB_FIRE1 = 16
JB_FIRE2 = 17

If using JT_ZBXY, the first time you call this function it may
return nonsense values in the X/Y directions. Therefore you must
call it in the initialisation section of your program before using
it in the rest of your program.

SEE ALSO
Read_Mouse, Read_JoyStick, Read_JoyPad, Read_SegaPad, Read_Analogue,
games/games.i

1.6 games.library/Read_JoyStick

games.library/Read_JoyStick

NAME Read_Joystick -- Read the joystick status from a given joyport.

SYNOPSIS
JoyBits = Read_JoyStick(PortName)

d0 d0

ULONG Read_JoyStick(UWORD Portname);

FUNCTION
Interprets the current status of a joystick in the given port.
Ports 3 and 4 are recognised as extended joysticks in the parallel
port. If the user was not using the joystick, then JoyBits will
return a NULL value.

NOTE Try to use Read_JoyPort(), as that gives the same results, but
supports Joypads, Analogue joysticks etc.

INPUTS PortName - JPORT1, JPORT2, JPORT3 or JPORT4.

Default 9 / 58

RESULT JoyBits - The current joystick status bits. These are:

JS_LEFT = 0
JS_RIGHT = 1
JS_UP = 2
JS_DOWN = 3
JS_FIRE1 = 6
JS_FIRE2 = 7
JS_FIRE3 = 8

SEE ALSO
Read_JoyPort, Read_JoyPad, Read_SegaPad, Read_Analogue,
games/games.i

1.7 games.library/Read_Analogue

games.library/Read_Analogue

NAME Read_Analogue -- Read an analogue joystick from the given port.

SYNOPSIS
ZBXYStatus = Read_Analogue(PortName)

d0 d0

ULONG Read_Analogue(UWORD PortName);

FUNCTION
Reads an analogue joystick in either port 1 or port 2. The status
of the joystick is returned in ZXBYStatus (a packed state). If the
user was not using the joystick, then ZBXYStatus will return a NULL
value.

The first time you call this function it may return nonsense values
in the X/Y directions. Therefore you must call it in the
initialisation section of your program before using it in the rest
of your program.

JoyPorts 3 and 4 are not supported by this function.

EXAMPLE If you are having trouble unpacking the ZBXYStatus value in C, here
is some code to get the X, Y and Z values.

XPos += (BYTE)(ZBXY>>8);
YPos += (BYTE)ZBXY;
ZPos += (BYTE)(ZBXY>>24);

INPUTS PortName - JPORT1 or JPORT2.

RESULT ZBXYStatus - Current status of the analog joystick.

The status data looks like this:

BYTE | BIT RANGE | DATA
-----+-----------+--------------------------------------

1 | 0 - 7 | Y Direction

Default 10 / 58

2 | 8 - 15 | X Direction
3 | 16 - 23 | Button status bits.
4 | 23 - 31 | Z Direction (currently not supported)

Note that the further the joystick is pushed in a given direction,
the higher the value returned for the relevant byte. Negative
values denote a push in the opposite direction.

BUGS NOT IMPLEMENTED YET.

SEE ALSO
Read_JoyPort, Read_JoyStick, Read_SegaPad, Read_JoyPad.

1.8 games.library/Read_JoyPad

games.library/Read_JoyPad

NAME Read_JoyPad -- Reads a CD32 joypad from a specified port number.

SYNOPSIS
JoyBits = Read_JoyPad(PortName)

d0 d0

ULONG Read_JoyPad(UWORD PortName);

FUNCTION
Reads a standard Amiga JoyPad (ie a CD32 joypad) and returns its
current status in the JoyBits format. If the user was not using
the joypad, then JoyBits will return a NULL value.

INPUTS PortName - JPORT1 or JPORT2.

RESULT JoyBits - Current joypad status bits. These are:

JS_LEFT = 0
JS_RIGHT = 1
JS_UP = 2
JS_DOWN = 3
JS_RED = 6
JS_BLUE = 7
JS_PLAY = 8
JS_RWD = 9
JS_FFW = 10
JS_GREEN = 11
JS_YELLOW = 12

The red and blue buttons are the equivalent of fire buttons 1 and 2
on a standard joystick.

BUGS I have not tested this!

SEE ALSO
Read_JoyPort, Read_JoyStick, Read_SegaPad, Read_Analogue,
games/games.i

Default 11 / 58

1.9 games.library/Read_SegaPad

games.library/Read_SegaPad

NAME Read_SegaPad - Reads a Sega joypad from a specified port number.

SYNOPSIS
JoyBits = Read_SegaPad(PortName)

d0 d0

ULONG Read_SegaPad(UWORD PortName)

FUNCTION
Reads a standard Sega JoyPad and returns its current status in the
JoyBits format. If the user was not using the SegaPad, then
JoyBits will return a NULL value.

INPUTS PortName - JPORT1 or JPORT2.

RESULT JoyBits - Current joypad status bits. The flags are:

JS_LEFT = 0
JS_RIGHT = 1
JS_UP = 2
JS_DOWN = 3
JS_FIRE1 = 6
JS_FIRE2 = 7

BUGS This has not even been tested by me! Somone test it and tell me if
it works OK.

SEE ALSO
Read_JoyPort, Read_JoyStick, Read_JoyPad, Read_Analogue,
games/games.i

1.10 games.library/Read_Key

games.library/Read_Key

NAME Read_Key -- Reads the keyboard and returns any new keypresses.

SYNOPSIS
KeyValue = Read_Key(KeyStruct)

d0 a0

UBYTE Read_Key(struct KeyStruct *);

FUNCTION
Checks to see if there was a keypress since the last time you
called this routine. If there were no keypresses then KeyValue
will return a NULL value.

Most key values are returned as ANSI, which is of the range 1-127.
Special keys (eg Cursor Keys, function Keys etc) are held in the

Default 12 / 58

range of 128-255. You can see what these special keys are in
games.i.

Qualifiers have automatic effects on the ANSI value (eg shift+c
will return "C"). Alt keys, Ctrl keys, and Amiga keys have no
effect on the ANSI value.

The KeyStruct is also updated for future reference. A KeyStruct
will hold up to four keys since your previous check. If you are
calling Read_Key() every vertical blank, you are already supporting
typing speeds of an astronomical 600 words per minute, so it is
only necessary to check KP_Key1. If you are only grabbing keys
every 1/2 second, then all fields should be checked.

INPUT KeyStruct - Pointer to a valid KeyStruct. This structure is in the
form of:

STRUCTURE KP,00
UWORD KP_ID ;Updated by function, ignore.
UBYTE KP_Key1 ;Newest KeyPress.
UBYTE KP_Key2 ;...
UBYTE KP_Key3 ;...
UBYTE KP_Key4 ;Oldest KeyPress.

RESULT KeyValue - Contains the latest keypress value, ie is identical to
KP_Key1.

KeyStruct - Updated to hold new key data. You may receive as much
as 4 keys in the provided fields. Key fields containing zero
indicate that no key was pressed (any following fields will also
be zero).

SEE ALSO
Add_InputHandler, games/games.i

1.11 games.library/FastRandom

games.library/FastRandom

NAME FastRandom -- Create a random number from a given range.

SYNOPSIS
Random = FastRandom(Range)
d0.w d1

UWORD FastRandom(UWORD Range);

FUNCTION
Creates a random number as quickly as possible. The routine has
only one divide to determine the range and will automatically
change the random seed value each time you call it.

This routine will generally get all the numbers in fairly random
sequences. However do not use it in fast-running loops, ie:

Default 13 / 58

for (i=0; i<100; i++) {
Array[i] = FastRandom(50);

}

You will not get very good numbers unless you use SlowRandom() in
the above case.

Remember that all generated numbers fall BELOW the Range, ie the
Range is an "unreachable" number. Add 1 to your range if you want
this number included.

INPUTS Range - A range between 1 and 32767. An invalid range of 0 will
result in a division by zero error.

RESULT Random - A number greater or equal to 0, and less than Range.

SEE ALSO
SlowRandom, examples/random.c

1.12 games.library/SlowRandom

games.library/SlowRandom

NAME SlowRandom -- Create a random number from a given range.

SYNOPSIS
Random = SlowRandom(Range)

d0 d1

ULONG SlowRandom(UWORD Range);

FUNCTION
Creates a very good random number in a relatively short amount of
time. The routine takes approximately two times longer than
FastRandom, but is guaranteed of giving excellent random number
sequences.

Remember that all generated numbers fall BELOW the Range, ie the
Range is an "unreachable" number. Add 1 to your range if you want
this number included.

INPUTS Range - A range between 1 and 32767.

RESULT Random - A number greater or equal to 0, and less than Range.

SEE ALSO
FastRandom, examples/random.c

1.13 games.library/Wait_LMB

games.library/Wait_LMB

Default 14 / 58

NAME Wait_LMB -- Wait for the user to hit the left mouse button.

SYNOPSIS
Wait_LMB()

void Wait_LMB(void);

FUNCTION
Waits for the user to hit the left mouse button. It will not
return to your program until this event occurs. Multi-tasking time
will be increased while waiting and an implanted AutoOSReturn()
call supports screen switching.

SEE ALSO
Read_Mouse, Wait_Fire.

1.14 games.library/Wait_Fire

games.library/Wait_Fire

NAME Wait_Fire -- Wait for the user to hit a fire button.

SYNOPSIS
Wait_Fire(PortName)

d0

void Wait_Fire(UWORD PortName);

FUNCTION
Waits for the user to hit the fire button. It will not return to
your program until this event occurs. Multi-tasking time will be
increased while waiting and an implanted AutoOSReturn() call
supports screen switching.

INPUTS PortName - JPORT1, JPORT2, JPORT3 or JPORT4.

SEE ALSO
Read_Joystick, Read_JoyPad, Read_SegaPad, Wait_LMB, games.i

1.15 games.library/Wait_Time

games.library/Wait_Time

NAME Wait_Time -- Wait for a specified amount of micro-seconds.

SYNOPSIS
Wait_Time(MicroSeconds)

d0

void Wait_Time(UWORD MicroSeconds);

FUNCTION

Default 15 / 58

Waits for a specified amount of micro-seconds. During this time it
will reduce the task priority and make regular calls to
AutoOSReturn() for you.

SEE ALSO
Wait_VBL, Wait_OSVBL

1.16 games.library/Wait_VBL

games.library/Wait_VBL

NAME Wait_VBL -- Waits for a vertical blank.

SYNOPSIS
Wait_VBL()

void Wait_VBL(void);

FUNCTION
Waits until the horizontal beam reaches the exact start of the VBL.
Even if you move your screen around using Remake_Screen(), the wait
line will move along with it, giving you more (or less) VBL space.

NOTE Use Wait_OSVBL() if you want automatic screen switching checks.

SEE ALSO
Wait_RastLine, Wait_OSVBL.

1.17 games.library/Wait_OSVBL

games.library/Wait_OSVBL

NAME Wait_OSVBL -- Waits for a vertical blank.

SYNOPSIS
Wait_OSVBL()

void Wait_OSVBL(void);

FUNCTION
Waits until the horizontal beam reaches the exact start of the VBL.
Even if you move your screen around using Move_Screen(), the wait
line will move along with it, giving you more (or less) VBL space.

This version has an implanted AutoOSReturn() call to make screen
switching very easy to implement.

SEE ALSO
Wait_RastLine, Wait_VBL.

Default 16 / 58

1.18 games.library/Wait_RastLine

games.library/Wait_RastLine

NAME Wait_RastLine -- Waits for the strobe to reach a specific line.

SYNOPSIS
Wait_RastLine(LineNumber)

d0

void Wait_RastLine(WORD LineNumber)

FUNCTION
Waits for the strobe to reach the scan-line specified in
LineNumber. The recognised range is dependent on the low
resolution height of your screen, eg 0-256 for a standard 320x256
screen. It is permissable to enter negative values and values that
exceed this range, but only do so if absolutely necessary.

This function has been specially written to avoid beam misses
caused by the untimely activation of interrupts.

INPUTS LineNumber - Vertical beam position to wait for.

BUGS If you enter a large value that is well beyond the range limit,
like #350, the strobe will never reach this line because line 350
doesn’t even exist. This will cause your program to lock up.
Please keep your values restricted to the height of your screen.

SEE ALSO
Wait_OSVBL, Wait_VBL.

1.19 games.library/Add_InputHandler

games.library/Add_InputHandler

NAME Add_InputHandler -- Add an input handler to the system.

SYNOPSIS
Add_InputHandler()

void Add_InputHandler(void)

FUNCTION
Add an input handler at the highest priority to delete all system
input events. The idea behind this is to prevent input falling
through to system screens and to give you more CPU time by killing
all inputs.

If you are going to use any of the Read functions (eg Read_Key())
then it is vital that this function is active. This is because
some of the Read functions are hooked into the input handler
that this function provides.

Default 17 / 58

NOTE By default this function is always called by Show_Screen().
Therefore you only need to call this routine if you are using some
other screen opening routine.

SEE ALSO
Rem_InputHandler

1.20 games.library/Rem_InputHandler

games.library/Rem_InputHandler

NAME Rem_InputHandler -- Remove the active input handler.

SYNOPSIS
Rem_InputHandler()

void Rem_InputHandler(void)

FUNCTION
Removes the active input handler from the system. As a result this
will also deactivate certain Read functions (eg Read_Key()).

NOTE Delete_Screen() automatically calls this function so that any input
handlers set up by Show_Screen() are removed.

SEE ALSO
Add_InputHandler

1.21 games.library/Add_Interrupt

games.library/Add_Interrupt

NAME Add_Interrupt -- Activate a custom written hardware interrupt.

SYNOPSIS
IntBase = Add_Interrupt(Interrupt, IntNum, IntPri)

d0 a0 d0 d1

ULONG Add_Interrupt(APTR Interrupt, UWORD IntNum, BYTE IntPri)

FUNCTION
Initialises a system-friendly hardware interrupt and activates it
immediately. See the SetIntVector() and AddIntServer() descrip-
tions in the exec.library for more details on system interrupts.

INPUTS Interrupt - Ptr to your interrupt routine.
IntNum - The hardware interrupt bit.
IntPri - The priority of the interrupt, -126 to +127.

RESULT IntBase - Pointer to the interrupt base, you have to save this
address and pass it back to Rem_Interrupt() before your program
exits.

Default 18 / 58

SEE ALSO
Rem_Interrupt, exec/SetVector, hardware/custom.i, games/games.i

1.22 games.library/Rem_Interrupt

games.library/Rem_Interrupt

NAME Rem_Interrupt -- Remove an active interrupt.

SYNOPSIS
Rem_Interrupt(IntBase)

d0

void Rem_Interrupt(ULONG IntBase)

FUNCTION
Disable and remove an active interrupt from the system. This
function is identical to RemIntServer() in the exec.library, but is
a little easier to handle.

INPUT
IntBase - Pointer to an interrupt base returned from Add_Interrupt().

SEE ALSO
Add_Interrupt, games.i

1.23 games.library/SmartLoad

games.library/SmartLoad

NAME SmartLoad -- Load in a file and depack it if possible.

SYNOPSIS
MemLocation = SmartLoad(FileName, Destination, Password, MemType)

d0 a0 a1 d0 d1

ULONG SmartLoad(char *FileName, APTR Destination, ULONG Password,
ULONG MemType)

FUNCTION
Loads in a file and depacks it if necessary. If the function
cannot find a recognised packer for the file then it will assume
that it is not packed, and load it in without alteration.

SmartLoad() is written to be as intelligent as possible when
loading the file. This includes keeping memory usage as low as
possible, and searching the current directory for a file if any
disk assignment cannot be found. Future revisions of SmartLoad()
are likely to contain more of these types of intelligent features.

Currently supported packers are XPK (external), PowerPacker (inter-

Default 19 / 58

nal) and RNC (internal). The recommended packing method for your
files is the traditional RNC packer, which does not require any
extra buffers for unpacking.

Files packed with XPK require the xpkmaster.library and the
relevant compressor in your LIBS: directory, if the file is to
unpack. Keep this in mind when distributing your game.

If you pass NULL as the Destination address, SmartLoad() will
allocate the memory for you and return it in MemLocation, but you
must give the MemType (see exec/memory.h).

If you give the Destination for the file then the MemType is
ignored.

NOTE If you wanted the allocation you will have to free it with
FreeMemBlock() when you are finished with it.

INPUTS FileName - Ptr to a null terminated string containing a file name.
Destination - Destination for unpacked data or NULL for allocation.
Password - If the file is encrypted, supply a key here.
MemType - Memory Type (only required if Destination is NULL)

RESULT MemLocation - Ptr to the loaded data or NULL if failure.

SEE ALSO
QuickLoad, SmartUnpack, exec/memory.i

1.24 games.library/QuickLoad

games.library/QuickLoad

NAME QuickLoad -- Load in a file without any depacking.

SYNOPSIS
MemLocation = QuickLoad(FileName, Destination, MemType)

d0 a0 a1 d0

APTR QuickLoad(char *FileName, APTR Destination, ULONG MemType)

FUNCTION
Loads in a file without attempting to depack it. The advantage of
this function is that it will assess the file size and load it all
in for you. It can also allocate the memory space if required, and
has limited directory searching as in SmartLoad(), if the file
cannot immediately be found.

If you pass NULL as the Destination address, QuickLoad() will
allocate the memory for you but you must give the MemType (see
exec/memory.h).

If you give the Destination for the file then the MemType is
ignored.

NOTE If you wanted the allocation you will have to free it with

Default 20 / 58

FreeMemBlock() when you are finished with it.

INPUTS FileName - Ptr to a null terminated string containing a file name.
Destination - Destination for unpacked data or NULL for allocation.
MemType - Memory Type (only required if Destination is NULL)

RESULT MemLocation - Ptr to the loaded data or NULL if failure.

SEE ALSO
SmartLoad, SmartUnpack, exec/memory.i

1.25 games.library/SmartUnpack

games.library/SmartUnpack

NAME SmartUnpack -- Unpack data from one memory location to another.

SYNOPSIS
MemLocation = SmartUnpack(Source, Destination, Password, MemType)

d0 a0 a1 d0 d1

APTR SmartUnpack(APTR Source, APTR Destination, ULONG Password,
ULONG MemType)

FUNCTION
Attempts to unpack a data area if it can assess the packing method
used. The data should begin with an ID longword followed by the
size of the original data before it was packed. The data itself
must follow directly after this. Any packer that does not do this
will not be supported by this function.

If you pass NULL as the destination address, SmartUnpack() will
allocate the memory for you, but you must give the MemType (see
exec/memory.h). If you give the Destination, the MemType is
ignored.

This function currently supports XPK (external) and the RNC
(internal) packer types. The RNC packer can unpack directly over
itself (ie Source and Destination can be the same). Do not try
this with the XPK packer - it won’t work!

NOTE Remember to free any memory returned in MemLocation with
FreeMemBlock() if you wanted the allocation.

INPUTS Source - Ptr to start of packed data (must be an ID header).
Destination - Destination for unpacked data or NULL for allocation.
Password - FileKey or NULL if none is used.
MemType - Memory type (only supply if Destination is NULL).

RESULT MemLocation - Ptr to the unpacked data.

SEE ALSO
SmartLoad, exec/memory.i

Default 21 / 58

1.26 games.library/SmartSave

NAME SmartSave -- Save a file to disk using a packer algorithm.

SYNOPSIS
ErrorCode = SmartSave(FileName, Source, SrcLength)

d0 a0 a1 d0

UWORD SmartSave(char *FileName, APTR Source, ULONG SrcLength)

FUNCTION
Saves a file to disk, and if possible, packing it before-hand. The
currently supported packing method is XPK-NUKE, but GMSPrefs will
soon allow the user to select any XPK packing method.

INPUTS FileName - Name of the file to save to.
Source - Pointer to the start of the source data.
SrcLength - Amount of data to save.

RESULT ErrorCode - A standard GMS errorcode. NULL indicates success.

SEE ALSO
SmartLoad, SmartUnpack, games/games.i

1.27 games.library/SetUserPri

games.library/SetUserPri

NAME SetUserPri -- Set your task to a user selected priority.

SYNOPSIS
SetUserPri()

void SetUserPri(void)

FUNCTION
Sets your task to a user selected priority. This priority will
depend on the UserPri setting in the ENV:GMSPrefs file. This
priority setting can be altered in the GMSPrefs utility.

This function should be used in all your programs written with GMS,
as part of the initialisation procedure.

SEE ALSO
exec/SetTaskPri

1.28 games.library/SetGMSPrefs

games.library/SetGMSPrefs

NAME SetGMSPrefs -- Initialise a new set of preferences.

Default 22 / 58

SYNOPSIS
ErrorCode = SetGMSPrefs(PrefsStruct)

d0 a0

UWORD SetGMSPrefs(APTR PrefsStruct)

FUNCTION
Initialise a new set of GMS preferences in the games.library. This
will overwrite the prefs previously set in memory. This function
is intended for use by the GMSPrefs program, there should be no
reason for you to use it in your own game.

INPUT PrefsStruct - Ptr to a valid preferences structure. Details of
this structure are not available to you for the moment, so you
can’t actually make any use of this function just yet :-)

RESULT ErrorCode - Returns NULL if successful.

1.29 games.library/LoadPic

games.library/Loadpic

NAME LoadPic -- Load in a recognised picture file.

SYNOPSIS
ErrorCode = LoadPic(FileName, Picture)

d0 a0 a1

ULONG LoadPic(char *FileName, struct Picture *)

FUNCTION

INPUT FileName - The picture file to load.
Picture - Pointer to a Picture structure.

RESULT ErrorCode - Returns NULL if successful.

1.30 games.library/UnpackPic

games.library/Loadpic

NAME UnpackPic -- Unpack a picture to a designated buffer.

SYNOPSIS
ErrorCode = UnpackPic(Source, Picture)

d0 a1 a0

ULONG UnpackPic(APTR Source, struct Picture *)

FUNCTION
Unpacks the data contained in a recognised picture header to the
data destination given in the Picture structure. If you do not

Default 23 / 58

give a data destination, then the destination will be allocated for
you and placed in SS_Data.

If this function cannot identify the source header, then the call
will fail. Currently the only supported format is IFF, but GIF and
JPEG support will be added later.

INPUT Source - Pointer to the header of the picture source.
Picture - Pointer to a Picture structure.

RESULT ErrorCode - Returns NULL if successful.

1.31 games.library/GetPicInfo

games.library/GetPicInfo

NAME GetPicInfo -- Get the information on a recognised picture type.

SYNOPSIS
ErrorCode = GetPicInfo(Picture)

d0 a1

ULONG GetPicInfo(struct Picture *)

FUNCTION
Not implemented yet.

INPUT
Picture - Pointer to a Picture structure.

RESULT ErrorCode - Returns NULL if successful.

1.32 games.library/AllocMemBlock

games.library/AllocMemBlock

NAME AllocMemBlock -- Allocate a new memory block.

SYNOPSIS
MemBlock = AllocMemBlock(Size, MemType)

d0 d0 d1

APTR AllocMemBlock(ULONG Size, ULONG MemType)

FUNCTION
Allocates a memory block from the system - this function is almost
identical to AllocVec(). It exists here because AllocVec() is only
available on V36+ machines. Also it uses memory headers and tails
so that you may successfully identify allocated memory blocks.

See AllocMem() in the exec.library for more details on memory
allocation.

Default 24 / 58

INPUT Size - Size of the required memblock in bytes.
MemType - The type of memory as outlaid in exec/memory.i

RESULT MemBlock - Ptr to the start of your allocated memblock or NULL if
failure. If the allocation was successful then -4(MemBlock) will
contain the size of your allocated memory. You can read this
value, but DON’T write to it! You can also check for valid
memory allocations by looking at the ID header. "MEMH" is placed
at -8(MemBlock).

SEE ALSO

FreeMemBlock
, exec/memory.i

1.33 games.library/FreeMemBlock

games.library/FreeMemBlock

NAME FreeMemBlock -- Free a previously allocated mem block.

SYNOPSIS
FreeMemBlock(MemBlock)

a0

void FreeMemBlock(APTR MemBlock)

FUNCTION
Frees a memory area allocated by AllocMemBlock(). This is the most
reliable and crash-proof freemem function currently on the Amiga.

If the mem header or tail is missing, then it can be assumed that
something has written over the boundaries of your memblock, or you
are attempting to free a non-existant allocation. Normally this
would cause a complete system crash, but instead we simply alert
you to the fact, and you can continue on.

It does pay to save your work and reset your machine if such a
message appears, as it indicates that important memory data may
have been destroyed.

NOTE Never free the same MemBlock twice.

INPUT MemBlock - Points to the start of a memblock.

SEE ALSO

AllocMemBlock
, exec/memory.i

Default 25 / 58

1.34 games.library/Add_Screen

games.library/Add_Screen

NAME Add_Screen -- Sets up a screen from given parameters.

SYNOPSIS
ErrorCode = Add_Screen(GameScreen)

d0 a0

FUNCTION
Initialises a GameScreen structure by allocating the screen memory
and making the copperlist. A little more complex than it sounds...

After calling this function you need to call Show_Screen() to get
the screen on the display.

INPUTS GameScreen - Pointer to a valid GameScreen structure. Currently
the structure look like this:

STRUCTURE GameScreen,0 ;A GameScreen structure
ULONG SS_VERSION ;Vesion - "GSV1"
APTR SS_Stats ;Reserved, do not touch.
APTR SS_MemPtr1 ;Ptr to screen 1
APTR SS_MemPtr2 ;Ptr to screen 2 (double buffer)
APTR SS_MemPtr3 ;Ptr to screen 3 (triple buffer)
APTR SS_ScreenLink ;Ptr to a linked screen.
APTR SS_Palette ;Ptr to a palette.
APTR SS_RasterList ;Ptr to a raster list.
ULONG SS_AmtColours ;The amount of colours on screen.
UWORD SS_ScrWidth ;The width of the visible screen.
UWORD SS_ScrHeight ;The height of the visible screen.
UWORD SS_PicWidth ;The width of the entire screen.
UWORD SS_PicHeight ;The height of the entire screen.
UWORD SS_Planes ;The amount of planes in da screen.
WORD SS_ScrXOffset ;X offset for top of screen.
WORD SS_ScrYOffset ;Y offset for top of screen.
WORD SS_PicXOffset ;X offset for picture.
WORD SS_PicYOffset ;Y offset for picture.
ULONG SS_ScrAttrib ;Special Attributes.
UWORD SS_ScrMode ;What screen mode is it?
UBYTE SS_ScrType ;Interleaved/Planar/Chunky?
UBYTE SS_Displayed ;Reserved, do not touch.

Here follows a description of each field:

SS_VERSION
The version of the structure. Currently this is "GSV1". In the
future as the structure grows, you will be able to use other
structure versions, but for now this is what you’re stuck with.

SS_MemPtr1, SS_MemPtr2, SS_MemPtr3
These fields point to the screen display data. They should be NULL
if you want this function to allocate the memory for you (highly
recommended). Otherwise Add_Screen() will assume that the values
are valid pointers to video memory and will use them as such.

Default 26 / 58

SS_ScreenLink
If you want to set up a second screen at a different position in
the viewport, or create an extra (double) playfield, point to the
next GameScreen structure here.

SS_Palette
Points to the palette for this screen, or NULL if you want to
install a clear palette (all colours black). By default your
palette structure must be in 12 bit colours, unless you set the
COL24BIT flag in SS_ScrAttrib.

SS_RasterList
Points to a valid rasterlist structure, or NULL. RasterLists are
made up of instructions that are executed as the monitor beam
travels down the screen. See Init_RasterList() for more
information on rasterlists.

SS_AmtColours
The amount of colours in the screen palette, as pointed to by
SS_Palette. If you set this value to NULL then Add_Screen() will
fill it in for you, via a check to SS_Planes. This parameter
exists so that you can set colours that can’t be accessed by the
screen’s bitmap. For example, if your screen is 16 colours but you
want to set the colours for the sprites, then you can use a 32
colour palette.

SS_ScrWidth, SS_ScrHeight
Defines the screen height and width. This is the "window" that the
picture data is displayed through. The width of the screen must be
divisible by 16.

SS_PicWidth, SS_PicHeight
Defines the picture height and width. The picture is the display
data that shows through on screen. It can be larger than the
screen area, but must never be smaller than the screen area. If
the picture is the same size as your screen, just duplicate the
screen values here. Note that the width of the picture must be
divisible by 16.

SS_Planes
Specifies the amount of bitplanes that will be used by this screen.
The amount of colours you can use is completely dependent on this
value. For interleaved or planar screens you can calculate the
amount of colours you get with the formula 2^n, where n is the
amount of planes. If you are going to set up a 256 colour chunky
screen, you must specify only 1 plane here.

SS_ScrXOffset, SS_SrcYOffset
Specifies the hardware offset for the screen, in lo-res pixels only
(even if the screen itself is in hi-res). These two values are
added to the user’s screen offset in GMSPrefs. A setting of 0,0
should be sufficient, unless you are going to create an extra large
screen (eg overscan). Negative values are permissable.

SS_PicXOffset, SS_PicYOffset
These two fields set the offsets for the picture "behind" the

Default 27 / 58

screen. If you want to do any sort of hardware scrolling, you will
want to use these values in conjunction with Move_Picture(). It is
perfectly legal to preset these values before you call
Show_Screen().

SS_ScrAttrib
Defines the special attributes for the screen. Current available
are:

DBLBUFFER - Allocates an extra screen buffer which is placed in
SS_MemPtr2. See the SwapBuffers() function for more
information on double buffering.

TPLBUFFER - Allocates two extra buffers which are placed in
SS_MemPtr2 and SS_MemPtr3. See the SwapBuffers() for
more information on triple buffering.

Note: Never set the DBLBUFFER flag in conjunction
with the TPLBUFFER flag.

PLAYFIELD - Must be set if this screen forms part of a playfield.

HSCROLL - Set if you want to use horizontal picture scrolling.

VSCROLL - Set if you want to use vertical picture scrolling.

HBUFFER - Allocates extra space to allow you to horizontally
scroll up to 50 screens in both X directions.

SPRITES - Set if you intend to use sprites with this screen.

BLKBDR - Turns all colours outside of the display window to
black. Works on AGA only.

NOSPRBDR - Allows sprites to appear outside of the screen dis-
play window. Works on AGA only.

SS_ScrMode
Defines the display mode for the screen. If you do not fill in
this field, you will get the default of Lo-Res, Planar, PAL, and
12Bit colours.

LORES - Specifies a low resolution screen. This is the
default, so you do not have to specify it if you
don’t want to.

HIRES - Specifies a hi-resolution screen.

SHIRES - Specifies a superhi-resolution screen.

INTERLACED - Creates an interlaced display.

NTSC - Forces an NTSC style display. The default is PAL if
you do not set this bit.

HAM - HAM mode. The amount of colours you get is depen-
dant on the amount of planes in the screen.

Default 28 / 58

COL24BIT - Inform GMS that we will be using 24 bit colours with
this screen.

If the user has selected mode promotion in GMSPrefs, then the
display frequencies will be altered accordingly. You cannot force
mode promotion from inside your program.

SS_ScrType
The display data type - either PLANAR, INTERLEAVED or CHUNKY.
Descriptions of these display types are out of the scope of this
autodoc, perhaps you should try the RKM’s for more information on
this.

RESULT ErrorCode - NULL if successful.

BUGS If you set up your screen structure incorrectly or try to do
something this routine doesn’t, you will run into trouble. Not all
features are working even though the flags are present, but it
shouldn’t be too long before this function is finished.

SEE ALSO
Delete_Screen, Show_Screen, Hide_Screen, games/games.i

1.35 games.library/Delete_Screen

games.library/Delete_Screen

NAME Delete_Screen -- Deactivates a screen, returns memory, etc.

SYNOPSIS
Delete_Screen(GameScreen)

a0

void Delete_Screen(struct GameScreen *);

FUNCTION
This function will deallocate everything that was initialised when
you called Add_Screen().

If the screen you delete is currently active when you call this
function, intution will be given back the display. If you want to
get around this, initialise and display your next screen and then
delete the old one.

This function will clear SS_MemPtr1, SS_MemPtr2 and SS_MemPtr3 in
the GameScreen structure, if those fields were allocated by
Add_Screen().

INPUTS GameScreen - Pointer to an initialised GameScreen structure.

SEE ALSO
Add_Screen, Hide_Screen, Show_Screen

Default 29 / 58

1.36 games.library/Show_Screen

games.library/Show_Screen

NAME Show_Screen -- Displays an initialised game screen.

SYNOPSIS
Show_Screen(GameScreen)

a0

void Show_Screen(struct GameScreen *)

FUNCTION
Displays an initialised GameScreen. A GameScreen is incompatible
with intuition screens, so calling this function will result in a
complete take-over of the viewport.

This function makes a call to Add_InputHandler() to prevent input
falling through to intuition screens.

It is perfectly admissable to call this function when another
GameScreen is already being displayed.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.

SEE ALSO
Hide_Screen, Add_Screen, Delete_Screen.

1.37 games.library/Hide_Screen

games.library/Hide_Screen

NAME Hide_Screen -- Hides any displayed GameScreen from view.

SYNOPSIS
GameScreen = Hide_Screen()

d0

APTR Hide_Screen(void)

FUNCTION
Hides the currently displayed screen from view. This will cause
the OS viewport to be returned, but your task will still be running
"in the background".

If no GameScreen is present then this function does nothing, and
returns a NULL value.

On its own this is not good for screen-switching - use functions
like AutoOSReturn() for that.

RESULT GameScreen - Points to the structure of the GameScreen that has
been hidden by this function. Otherwise NULL if no GameScreen
was active.

Default 30 / 58

SEE ALSO
Show_Screen, Add_Screen, Delete_Screen, ReturnToOS, AutoOSReturn,
Wait_OSVBL.

1.38 games.library/ReturnToOS

games.library/ReturnToOS

NAME ReturnToOS -- Returns the screen display to intuition.

SYNOPSIS
ReturnToOS()

void ReturnToOS(void)

FUNCTION
Returns the screen display to intuition immediately. Your game’s
execution will be halted until the user brings your screen back.

GMS supports two methods of screen switching, Switch-To-Window and
Switch-To-Screen. The method used depends on the setting in the
GMSPrefs utility.

Switch-To-Window drops out to workbench and places a window on the
screen. It will busy-wait until the close gadget is pressed,
whereupon your game will continue where it left off.

Switch-To-Screen opens an intution screen and busy-waits until that
screen comes to the front. At that point the intuition screen will
be closed and your game will resume execution.

SEE ALSO
AutoOSReturn, Hide_Screen, Wait_OSVBL

1.39 games.library/AutoOSReturn

games.library/AutoOSReturn

NAME AutoOSReturn -- Returns the screen display to intuition if the
Left-Amiga + M key combination was pressed.

SYNOPSIS
AutoOSReturn()

void AutoOSReturn(void)

FUNCTION
Returns the screen display to intuition if the user pressed the
Left-Amiga+M key combination. Your game’s execution will be halted
until the user brings your screen back.

Default 31 / 58

GMS supports two methods of screen switching, Switch-To-Window and
Switch-To-Screen. The method used depends on the setting in the
GMSPrefs utility.

Switch-To-Window drops out to workbench and places a window on the
screen. It will busy-wait until the close gadget is pressed,
whereupon your game will continue where it left off.

Switch-To-Screen opens an intution screen and busy-waits until that
screen comes to the front. At that point the intuition screen will
be closed and your game will resume execution.

SEE ALSO
ReturnToOS, Hide_Screen, Wait_OSVBL

1.40 games.library/SwapBuffers

games.library/SwapBuffers

NAME SwapBuffers -- Switch the screen display buffers.

SYNOPSIS
SwapBuffers(GameScreen)

a0

void SwapBuffers(struct GameScreen *)

FUNCTION
Swaps SS_MemPtr1 and SS_MemPtr2 and activates the new bitmap for
the display. If triple buffered, then all three MemPtr’s are
switched. Visually:

BEFORE AFTER
MemPtr1 MemPtr2
MemPtr2 ----> MemPtr3
MemPtr3 MemPtr1

You can get the addresses contained in these values, but you must
never physically change these pointers yourself.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.

1.41 games.library/Remake_Screen

games.library/Remake_Screen

NAME Remake_Screen -- Remakes the screen display according to its size,
width, and position on the monitor.

SYNOPSIS
Remake_Screen(GameScreen)

a0

Default 32 / 58

void Remake_Screen(struct GameScreen *)

FUNCTION
Remakes the GameScreen’s display window as quickly as possible.
Extreme or invalid values are not checked for, so it is your
responsibility to ensure all values are within their limits.

If the GameScreen is hidden then the changes will show up the next
time you call Show_Screen().

You cannot change the display mode, screen type or amount of screen
colours with this function.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.

1.42 games.library/Move_Picture

games.library/Move_Picture

NAME Move_Picture -- Moves the screen to specified X/Y values.

SYNOPSIS
Move_Picture(GameScreen)

a0

void Move_Picture(struct GameScreen *)

FUNCTION
This routine has two uses: Moving the picture to any position on
the display, and for Hardware Scrolling.

It will take the values from PicXOffset and PicYOffset in the
GameScreen structure and use them to set the new picture position.
It doesn’t matter how far away the new position is, this function
will execute at the same speed for all values.

You must have set the HSCROLL bit for horizontal scrolling and the
VSCROLL bit for vertical scrolling if you wish to use this
function. If you set the HBUFFER flag in ScrAttrib then you can
also use this function to legally hardware-scroll up to 50 screens
in either X direction. Do not draw graphics beyond these
boundaries or your program may crash.

NOTES If the graphics hardware does not support hardware scrolling, this
routine will probably blit the entire picture to the new position.
This is very slow but is the only other option.

The execution time for this function on ECS/AGA is 2/3rds of a
single rasterline on my A1200+Fast.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
The PicXOffset and PicYOffset values will be used to set the
picture’s new on-screen position.

Default 33 / 58

SEE ALSO

Reset_Picture

1.43 games.library/Reset_Picture

games.library/Reset_Picture

NAME Reset_Picture -- Resets the picture position to position 0X, 0Y.

SYNOPSIS
Reset_Picture(GameScreen)

a0

void Reset_Picture(struct GameScreen *)

FUNCTION
Resets the picture position to 0X, 0Y. This is method is faster
than clearing the PicXOffset and PicYOffset fields before a call to
Move_Screen().

INPUTS GameScreen - Pointer to an initialised GameScreen structure.

RESULT PicXOffset and PicYOffset in the GameScreen will be cleared.

SEE ALSO

Move_Picture

1.44 games.library/B12_FadeToBlack

games.library/B12_FadeToBlack

NAME B12_FadeToBlack -- Fade all colours to black.

SYNOPSIS
FadeState = B12_FadeToBlack(GameScreen, FadeState)

d0 a0 d0

UWORD B12_FadeToBlack(struct GameScreen *, UWORD FadeState)

FUNCTION
Fades all the colours in the specified screen to black. Once you
call this function, you have to keep on calling it until it gives
you a result of NULL. This allows you to put this function in a
loop and do other things while the fade is active.

For a 24 bit palette use B24_FadeToBlack().

EXAMPLE FadeState = 0;

Default 34 / 58

do {
Wait_OSVBL;

FadeState = B12_FadeToBlack(GameScreen,FadeState);
}

while (FadeState != 0)

INPUTS GameScreen - An initialised GameScreen structure.
FadeState - Initialise to zero, then keep sending the returned

value back until you get a NULL in this field.

RESULT FadeState - Returns NULL if fade has finished.

SEE ALSO

B24_FadeToBlack

1.45 games.library/B12_FadeToWhite

games.library/B12_FadeToWhite

NAME B12_FadeToWhite -- Fade (flash) all colours to white.

SYNOPSIS
FadeState = B12_FadeToWhite(GameScreen, FadeState, StartCol, AmtCols)

d0 a0 d0 d1 d2

UWORD B12_FadeToWhite(struct GameScreen *, UWORD FadeState,
UWORD StartCol, UWORD AmtCols);

FUNCTION
Fades the colours in the specified screen to white. Once you call
this function, you have to keep on calling it until it gives you a
result of NULL. This allows you to put this function in a loop and
do other things while the fade is active.

For a 24 bit palette use B24_FadeToWhite().

EXAMPLE FadeState = 0;
do {

Wait_OSVBL;
FadeState = B12_FadeToWhite(GameScreen,FadeState,00,32);
}

while (FadeState != 0)

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
FadeState - Initialise to zero, then keep sending the returned

value back until you get a NULL in this field.
StartCol - The colour to start the fade from.
AmtCols - The amount of colours to fade from StartCol.

RESULT
FadeState - Send this value back to the function until it returns

NULL.

Default 35 / 58

SEE ALSO

B24_FadeToWhite

1.46 games.library/B12_FadeToPalette

games.library/B12_FadeToPalette

NAME B12_FadeToPalette -- Fade the current palette to another palette.

SYNOPSIS
FadeState = B12_FadeToPalette(GameScreen, Palette, FadeState,

d0 a0 a1 d0
StartCol, AmtCols)

d1 d2

UWORD B12_FadeToPalette(struct GameScreen *, APTR Palette,
UWORD FadeState, UWORD StartCol,
UWORD AmtCols);

FUNCTION
This is what some may call a "palette morph" function. It will
take the given screen’s internal palette and fade it to the one
given in Palette [a1]. This function is quite useful for fading in
from black screens.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
Palette - Ptr to a valid palette (colour array).
FadeState - Initialise to zero, then keep sending the returned

value back until you get a NULL in this field.

RESULT FadeState - Returns NULL if the fade has finished.

SEE ALSO

B24_FadeToPalette

1.47 games.library/B12_FadeToColour

games.library/B12_FadeToColour

NAME B12_FadeToColour -- Fade all the colours in a screen to a single
colour value.

SYNOPSIS
FadeState = B12_FadeToColour(GameScreen, FadeState, RGB)

d0 a0 d0 d1

UWORD B24_FadeToColour(struct GameScreen *, UWORD FadeState,
UWORD RGB);

Default 36 / 58

FUNCTION
Fades the colours in the given screen to a single colour type.
Once you call this function, you have to keep on calling it until
it gives you a result of NULL. This allows you to put this
function in a loop and do other things while the fade is active.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
RGB - The colour to fade to, in Red-Green-Blue format.
FadeState - Initialise to zero, then keep sending the returned

value back until you get a NULL in this field.

RESULT FadeState - Returns NULL if the fade has finished.

SEE ALSO

B24_FadeToColour

1.48 games.library/24BIT_FadeToBlack

games.library/24BIT_FadeToBlack

NAME B24_FadeToBlack -- Fade all the colours in a screen to black.

SYNOPSIS
FadeState = B24_FadeToBlack(GameScreen, FadeState, Speed)

d0 a0 d0 d1

UWORD B24_FadeToBlack(struct GameScreen *, UWORD FadeState,
UWORD Speed)

FUNCTION
Fades all the colours in the specified screen to black. Once you
call this function, you have to keep on calling it until it gives
you a result of NULL. This allows you to put this function in a
loop and do other things while the fade is active.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
Speed - Determines the rate at which the fade will execute. The

higher the value, the less you will need to call this routine.
FadeState - Initialise to zero, then keep sending the returned

value back until you get a NULL in this field.

RESULT FadeSate - Returns NULL if the fade has finished.

SEE ALSO

B12_FadeToBlack

1.49 games.library/24BIT_FadeToWhite

Default 37 / 58

games.library/B24_FadeToWhite

NAME B24_FadeToWhite -- Fade all the colours in a screen to white.

SYNOPSIS
FadeState = B24_FadeToWhite(GameScreen, FadeState, Speed)

d0 a0 d0 d1

UWORD B24_FadeToWhite(struct GameScreen *, UWORD FadeState,
UWORD Speed);

FUNCTION
Fades all the colours in the screen to white. Once you call this
function, you have to keep on calling it until it gives you a
result of NULL. This allows you to put this function in a loop and
do other things while the fade is active.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
FadeState - Initialise to zero, then keep sending the returned

value back until you get a NULL in this field.

RESULT FadeState - Initialise to zero, then keep sending the returned
value back until you get a NULL in this field.

SEE ALSO

B12_FadeToWhite

1.50 games.library/B24_FadeToPalette

games.library/B24_FadeToPalette

NAME B24_FadeToPalette -- Fade a screen palette to a new set of values.

SYNOPSIS
FadeState = B24_FadeToPalette(GameScreen, FadeState, Palette, Speed)

d0 a0 d0 a1 d1

UWORD B24_FadeToPalette(struct GameScreen *, UWORD FadeState,
APTR Palette, UWORD Speed)

FUNCTION
This is what some may call a "palette morph" function. It will
take the given screen’s internal palette and fade it to the one
given in Palette(a1). This function is quite useful for fading in
from black screens.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
Palette - Ptr to a 24 bit palette with the same amount of colours

as are in the screen.
FadeState - Initialise to zero, then keep sending the returned

value back until you get a NULL in this field.

Default 38 / 58

RESULT FadeState - Returns NULL if the fade has finished.

SEE ALSO
B12_FadeToPalette

1.51 games.library/B24_FadeToColour

games.library/B24_FadeToColour

NAME B24_FadeToColour -- Fade a screen palette to a specific colour.

SYNOPSIS
FadeState = B24_FadeToColour(GameScreen, FadeState, Colour, Speed)

d0 a0 d0 d2 d1

UWORD B24_FadeToColour(struct GameScreen *, UWORD FadeState,
UWORD Colour, UWORD Speed)

FUNCTION
This will fade all the colours in your screen’s internal palette
to a single 24 bit colour value.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
Colour - A 24Bit colour, ie $00RRGGBB format.
FadeState - Initialise to zero, then keep sending the returned

value back until you get a NULL in this field.

RESULT FadeState - Returns NULL if the fade has finished.

SEE ALSO

B12_FadeToColour

1.52 games.library/Change_Colours

games.library/Change_Colours

NAME Change_Colours -- Change a set of colours in a GameScreen’s internal
palette.

SYNOPSIS
Change_Colours(GameScreen, Colours, StartColour, AmtColours)

a0 a1 d0 d1

void Change_Colours(struct GameScreen *, APTR Colours,
ULONG StartColour, ULONG AmtColours).

FUNCTION
Changes all colours within the set range. Alterations will only be
made to the screen’s internal palette.

Default 39 / 58

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
Colours - Ptr to a list of colours, either 12 bit or 24 depending

on screen type.
StartColour - The first colour to be affected by the change. NB:

The first colour is defined as 0.
AmtColours - The amount of colours to be affected by the change.

Must be at least 1.

1.53 games.library/Blank_Colours

games.library/Blank_Colours

NAME Blank_Colours -- Drives all screen colours to zero (black).

SYNOPSIS
Blank_Colours(GameScreen)

a0

void Blank_Colours(struct GameScreen *)

FUNCTION
Drives all the colours to zero, which should give a black screen.
You won’t be able to see any picture detail after calling this
routine.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.

1.54 games.library/Init_RasterList

games.library/Init_RasterList

NAME Init_RasterList -- Initialise a new rasterlist.

SYNOPSIS
ErrorCode = Init_RasterList(GameScreen)

d0 a0

UWORD Init_RasterList(struct GameScreen *)

FUNCTION
Initialises a new rasterlist in a GameScreen structure. A
rasterlist is a group of commands executed at specific areas of the
display. On current Amiga’s, rasterlists are executed by the
copper (copperlist’s) at preset lines on the screen. When you call
this function a copperlist will be set up according to the commands
you give in your rasterlist structure. In the past creating
copperlists was a major compatibility concern because you need to
pass the copper direct hardware addresses. Thankfully with the
Games.Library this is no longer such a problem.

There is still the issue of gfx boards not having a copper style
chip on them. Luckily many of these commands can in some way be

Default 40 / 58

emulated, so all is not lost on that front.

Current valid commands are:

WAITLINE <Line>
Waits for the vertical beam to reach the specified screen position.
It is perfectly legal to enter numbers that go outside of your
screen’s vertical limits (ie negative numbers and numbers greater
than the screen height), but no more than a value of 10.

Note that the purpose of this command is to specify the screen
position at which the next command will be executed. All line
values must be specified in lo-res pixels, regardless of your
screen resolution.

COL12 <ColNum>,<RGB>
Changes a 12 bit colour value to another.

COL24 <ColNum>,<RRGGBB>
Same as the COL12 command, but uses 24 bit colours. Do not use
this command unless you have set the COL24BIT flag in SS_ScrAttrib.

COL12LIST <Line>,<Skip>,<ColNum>,<RGB>
Allows you to generate the classic coloured lines used by games and
demos everywhere. This command is mostly useful for sky/background
effects, although you could probably use it for all sorts of
things.

COL24LIST <Line>,<Skip>,<ColNum>,<RRGGBB>
Allows you to generate the classic coloured lines used by games and
demos everywhere. This command is mostly useful for sky/background
effects, although you could probably use it for all sorts of
things. Do not use this command unless you have set the COL24BIT
flag in SS_ScrAttrib.

SPRITE <SpriteStruct>
Re-activates a sprite bank at the specified line. This is commonly
known as sprite-splitting. This function is considered "dangerous"
and may simply do nothing on many gfx boards (although emulation is
a certain possibility).

REPOINT <Bitmap>
Repoints the screen bitmap to another area in chip ram, causing a
screen split at the point that this command is executed.

SCROLL <Offset>
Alters the scroll position of a bitplane to within 16 pixels. This
is really only useful for scrolling parallax landscapes.

FSCROLL <Offset1>,<Offset2>
Alters the scroll position of a bitplane to within 16 + 4 quarter
pixels. This is really only useful for scrolling parallax
landscapes.

FLOOD
A special effect that reverses the bitplane modulo, causing the
bitplane to repeat itself. This effect is used as a novel way of

Default 41 / 58

"fading in" the screen.

MIRROR
Similar to Flood, but does a complete reversal of the modulo so
that the bitplane is "flipped over". See examples/AGAMirror.s to
see how this works.

RASTEND
You must terminate your rasterlist with this command.

[If you have any other ideas for commands, mail me. - Paul]

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
SS_RasterList in this structure must contain a ptr to a standard
rasterlist.

Look at the examples in this package to help you with designing
your rasterlists.

RESULT ErrorCode - Is NULL if the initialisation was successful. Otherwise
it will return one of the following values:

ERR_NOMEM = Not enough memory was available for one of the
allocations.

ERR_NOPTR = You didn’t put an address pointer in SS_RasterList.

ERR_INUSE = A rasterlist is still in use by this screen (remove
the old one).

SEE ALSO
Update_RasterList, Show_RasterList, Hide_RasterList,
Remove_RasterList, games/games.i

1.55 games.library/Update_RasterList

games.library/Update_RasterList

NAME Update_RasterList -- Update an existing rasterlist.

SYNOPSIS
Update_RasterList(GameScreen)

a0

void Update_RasterList(struct GameScreen *)

FUNCTION
Completely updates a rasterlist’s commands and waitline’s to
whatever values SS_RasterList may now hold. The length of time to
do this depends on how big your rasterlist is (generally, it will
do the update very fast though).

Make sure that the new information provided is within the limits of
your original values, for example you cannot make changes to the
amount of colours used in a NEWPALETTE command.

Default 42 / 58

If you only want to update the lines or the command datas, then you
can call Update_RastCommands() or UpdateRastLines(), which can be a
bit faster in certain situations.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.

SEE ALSO
Init_RasterList, Show_RasterList, Hide_RasterList,
Remove_RasterList, Update_RastCommands, Update_RastLines,
games/games.i

1.56 games.library/Update_RasterLines

games.library/Update_RasterLines

NAME Update_RasterLines -- Updates all the WaitLine’s in an active
rasterlist.

SYNOPSIS
void Update_RasterLines(GameScreen)

a0

void Update_RasterLines(struct GameScreen *)

FUNCTION
Updates every occurance of a WAITLINE command in an active
rasterlist. This includes the update of waitline’s within commands
such as COL12LIST and COL24LIST. All other commands are excluded
from being updated by this function.

This function has been provided because for other functions it can
be unsafe to update single WAITLINE commands. Whenever you want
one or more raster line’s updated we insist that you use this or
the Update_RasterList() routine.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.

SEE ALSO
Update_RasterCommand, Update_RasterCommands, Update_RasterList

1.57 games.library/Update_RasterCommand

games.library/Update_RasterCommand

NAME Update_RasterCommand -- Update a single rasterlist command.

SYNOPSIS
Update_RasterCommand(GameScreen, Command)

a0 a2

void Update_RasterCommand(struct GameScreen *, APTR Command)

Default 43 / 58

FUNCTION
Updates a single raster command. This is the fastest way to update
any single command in a rasterlist. For the update of multiple
commands, use Update_RasterList() or Update_RasterCommands().

You must never use this command to update changes in WAITLINE
commands. Doing so can have unpredictable effects on other
WAITLINE commands present in the screen.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
Command - Points to the rasterlist command to be updated.

SEE ALSO
Update_RasterCommands, Update_RasterLines, Update_RasterList

1.58 games.library/Update_RasterCommands

games.library/Update_RasterCommands

NAME Update_RasterCommands -- Update a group of rasterlist commands’.

SYNOPSIS
Update_RasterCommands(GameScreen, Command, Amount)

a0 a2 d0

FUNCTION
Updates a group of raster commands in a screen’s active rasterlist.
This is the fastest way to update a group of commands without
having to do a complete rasterlist update. If you only want to
update a single command, use Update_RasterCommand(). For all the
commands, use Update_RasterList().

You must never use this command to update changes in WAITLINE
commands. Doing so can have unpredictable effects on other
WAITLINE commands present in the screen.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
Command - Points to the first rasterlist command to be updated.
Amount - The amount of commands to be updated.

SEE ALSO
Update_RasterCommand, Update_RasterLines, Update_RasterList

1.59 games.library/Remove_RasterList

games.library/Remove_RasterList

NAME Remove_RasterList -- Hide and delete RasterList from memory.

SYNOPSIS
Remove_RasterList(GameScreen)

Default 44 / 58

a0

void Remove_RasterList(struct GameScreen *)

FUNCTION
Removes the memory used by the rasterlist’s internal setup. If the
rasterlist is currently displayed then it will be hidden from the
view before the deletion.

Once this function is called the rasterlist is gone - if you want
to redisplay your rasterlist, you must reinitialise it with a call
to Init_RasterList().

INPUTS GameScreen - Pointer to an initialised GameScreen structure.

SEE ALSO
Init_RasterList, Show_RasterList, Hide_RasterList, Remove_RasterList,
games/games.i

1.60 games.library/Hide_RasterList

games.library/Hide_RasterList

NAME Hide_RasterList -- Hide a rasterlist from the display.

SYNOPSIS
Hide_RasterList(GameScreen)

a0

void Hide_RasterList(struct GameScreen *)

FUNCTION
Hides a rasterlist from the screen display. This function does not
delete the internal rasterlist or change the GameScreen structure
in any way. You can return the list to the display simply by
calling Show_RasterList().

NOTE There is a VBL delay in this function so that the rasterlist is not
removed while the beam is still executing its instructions.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.

SEE ALSO
Init_RasterList, Remove_RasterList, Show_RasterList, Hide_RasterList,
Update_RasterList

1.61 games.library/Show_RasterList

games.library/Show_RasterList

NAME Show_RasterList -- Display a rasterlist on screen.

Default 45 / 58

SYNOPSIS
Show_RasterList(GameScreen)

a0

void Show_RasterList(struct GameScreen *)

FUNCTION
Display a rasterlist on the screen. The pointer to the rasterlist
must lie in SS_RasterList, and must have been initialised by a call
to Init_RasterList().

INPUTS GameScreen - Pointer to an initialised GameScreen structure.

SEE ALSO
Init_RasterList, Hide_RasterList, Show_RasterList,
Remove_RasterList, Update_RasterList

1.62 games.library/Init_Sprite

games.library/Init_Sprite

NAME Init_Sprite -- Initialise a sprite structure.

SYNOPSIS
ErrorCode = Init_Sprite(GameScreen,Sprite)

d0 a0 a1

ULONG Init_Sprite(struct GameScreen *,struct Sprite *)

FUNCTION
Initialises a sprite ready for placement on the screen. After
calling this function you can use sprite functions such as
Update_Sprite(), Move_Sprite() etc.

If it is impossible to show the sprite, then an error code will be
returned. In such a case it helps to have a blitter routine as
back up, so that you can instead display the sprite as a BOB on
screen.

Sprites are very much dependent on the machine hardware, so be
aware that the image may not show on some machines.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
SpriteStruct - Looks like this:

STRUCTURE SpriteStruct,0
ULONG SPR_VERSION ;Structure version "SPV1".
APTR SPR_Stats ;Reserved.
UWORD SPR_Number ;Sprite bank number.
APTR SPR_Data ;Pointer to Sprite graphic.
WORD SPR_XPos ;X position (screen relative).
WORD SPR_YPos ;Y position (screen relative).
UWORD SPR_Frame ;Current frame number.
UWORD SPR_Width ;Width in pixels.
UWORD SPR_Height ;Height in pixels.

Default 46 / 58

UWORD SPR_AmtColours ;4/16
UWORD SPR_ColStart ;000/016/032/064/096/128/160/192/224
UWORD SPR_Planes ;Amt of planes per bank (2).
UWORD SPR_Resolution ;HIRES/LORES/SHIRES/XLONG
UWORD SPR_FieldPriority ;Playfield priority.
ULONG SPR_SpriteSize ;Reserved.
ULONG SPR_FrameSize ;Reserved.
LABEL SPV1_SIZEOF

Here follows a description of each field:

SPR_VERSION
The version of the structure. Currently this is "SPV1". In the
future as the structure grows, you will be able to use other
structure versions, but for now this is what you’re stuck with.

SPR_Number
The bank number that this sprite is going to use.

SPR_Data
Points to the beginning of the sprite data (starts with the two
control words).

SPR_XPos
Defines the horizontal position of the sprite when displayed.
Negative or extreme values that put the sprite outside of the
screen are permitted.

SPR_YPos
Defines the vertical position of the sprite when displayed.
Negative or extreme values that put the sprite outside of the
screen are permitted.

SPR_Frame
The number of the frame to display. The first frame is 0, the last
frame is defined by the amount of following graphics for the
sprite.

SPR_Width
The width of the sprite in pixels. Under OCS/ECS the only
available range is 16 pixels. Under AGA this is extended by
permission of values 32 and 64.

SPR_Height
The height of the sprite in pixels. A valid range is between 0 and
256.

SPR_AmtColours
The amount of colours used by this sprite. This will be either 4
colours or 16 colours if the sprite is to work on OCS/ECS/AGA.

SPR_ColStart
The colour bank at which the colours are going to start for this
sprite. This value goes up in increments of 16, eg 0,16,32,48...
Under OCS/ECS you must set this value to 16. For AGA the maximum
limit is 240. Note that under current hardware conditions, all
sprites must share the same colour bank. Do not attempt to set a

Default 47 / 58

different colour bank for each individual sprite.

SPR_Planes
Specifies the amount of planes used per bank. Set this value to 2.

SPR_Resolution
Defines the display mode for the sprite. Possible flags are:

LORES - Puts the sprite in low resolution. (Default)

HIRES - Specifies a high resolution sprite.

SHIRES - Specifies a super-high resolution sprite.

XLONG - Use this flag if you want to join two sprites
together on the X axis. The second sprite’s data
must follow the first sprite and fit the same
attributes.

SPR_FieldPriority
Defines the position of the sprite in relation to the screen
playfields. If set to 0 then the sprite is at the very front, if
set to 1 then the sprite is one field behind, and so on.

SEE ALSO
Move_Sprite, Update_Sprite, Update_SpriteList, Hide_SpriteList,
games/games.i

1.63 games.library/Update_Sprite

games.library/Update_Sprite

NAME Update_Sprite -- Place a sprite on the screen.

SYNOPSIS
Update_Sprite(GameScreen, Sprite)

a0 a1

void Update_Sprite(struct GameScreen *, struct Sprite *)

FUNCTION
Updates the sprite co-ordinates (screen location) and recalculates
the sprite image pointers for animation.

This function cannot make sudden changes to the width, colours,
resolution, or height of the sprite.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
Sprite - Pointer to an initialised Sprite structure.

SEE ALSO

Init_Sprite
,
Move_Sprite

Default 48 / 58

1.64 games.library/Move_Sprite

games.library/Move_Sprite

NAME Move_Sprite -- Move a sprite to a new screen location.

SYNOPSIS
Move_Sprite(GameScreen, Sprite)

a0 a1

void Move_Sprite(struct GameScreen *, struct Sprite *)

FUNCTION
Moves a sprite to a new screen location according to the X and Y
co-ordinates found in the SpriteSruct. This function does not act
on any other SpriteStruct values and is intended for non-animated
sprites.

NOTES On graphics hardware where sprites are not supported, the sprite
may be drawn to screen as a BOB.

There is no list support as static sprites are a rarity in games.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
Sprite - Pointer to an initialised Sprite structure.

SEE ALSO

Init_Sprite
, Update_Sprite

1.65 games.library/Hide_Sprite

games.library/Hide_Sprite

NAME Hide_Sprite -- Remove a sprite from the screen display.

SYNOPSIS
Hide_Sprite(GameScreen, Sprite)

a0 a1

void Hide_Sprite(struct GameScreen *, struct Sprite *)

FUNCTION
Hides a sprite from the screen display.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
Sprite - Pointer to an initialised Sprite structure.

Default 49 / 58

SEE ALSO

Hide_SpriteList

1.66 games.library/Update_SpriteList

games.library/Update_SpriteList

NAME Update_SpriteList -- Update a list of initialised sprites.

SYNOPSIS
Update_SpriteList(GameScreen, SpriteList)

a0 a1

void Update_SpriteList(struct GameScreen *, APTR SpriteList)

FUNCTION
Update a series of initialised sprites according to a SpriteList.
This function is provided as an alternative to making constant
calls to Update_Sprite(), which can be quite time consuming.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
SpriteStruct - Pointer to a SpriteList containing a list of up to 8
initialised sprites. The list must be terminated by a LISTEND, eg:

SpriteList:
dc.l "LIST"
dc.l SpriteStruct1
dc.l SpriteStruct2
dc.l SpriteStruct3
dc.l SpriteStruct4
dc.l LISTEND

SEE ALSO
Update_Sprite

1.67 games.library/Hide_SpriteList

games.library/Hide_SpriteList

NAME Hide_SpriteList -- Hide sprites as specified by a SpriteList.

SYNOPSIS
Hide_SpriteList(GameScreen, SpriteList)

a0 a1

void Hide_SpriteList(struct GameScreen *, APTR SpriteList)

FUNCTION
Hide a series of currently displayed sprites from the screen. This
function is provided as an alternative to making constant calls to

Default 50 / 58

Hide_Sprite(), which can be quite time consuming.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
SpriteStruct - Pointer to a SpriteList containing a list of up to 8
initialised sprites. The list must be terminated by a LISTEND, eg:

SpriteList:
dc.l "LIST"
dc.l SpriteStruct1
dc.l SpriteStruct2
dc.l SpriteStruct3
dc.l SpriteStruct4
dc.l LISTEND

SEE ALSO
Hide_Sprite

1.68 games.library/Remove_AllSprites

games.library/Remove_AllSprites

NAME Remove_AllSprites -- Remove all sprites from the display.

SYNOPSIS
Remove_AllSprites(GameScreen)

a0

void Remove_AllSprites(struct GameScreen *)

FUNCTION
Removes all displayed sprites from the screen simply by altering
the DMA Controller. This is the fastest way to remove all sprites
from the display quickly and easily.

NOTE After you have called this function you cannot see any visible
changes to sprites until you call Return_AllSprites().

INPUTS GameScreen - Pointer to an initialised GameScreen structure.

SEE ALSO
Return_AllSprites

1.69 games.library/Return_AllSprites

games.library/Return_AllSprites

NAME Return_AllSprites -- Return all sprites to the display.

SYNOPSIS
Return_AllSprites(GameScreen)

a0

Default 51 / 58

void Return_AllSprites(struct GameScreen *)

FUNCTION
Returns all sprites that were previously removed by Remove_All-
Sprites().

INPUTS GameScreen - Pointer to an initialised GameScreen structure.

SEE ALSO
Remove_AllSprites

1.70 games.library/

games.library/

NAME

SYNOPSIS

FUNCTION

INPUTS

RESULT

SEE ALSO

1.71 games.library/AllocAudio

games.library/AllocAudio

NAME AllocAudio -- Attempt to allocate the audio channels.

SYNOPSIS
ErrorCode = AllocAudio()

d0

ULONG AllocAudio(void)

FUNCTION
Attempts to allocate all the audio channels for your own use. If
the function cannot get the channels, it will return with an
errorcode of ERR_INUSE. If the call is successful (NULL) then you
can safely use all the sound functions within the games.library.

This function should be called at the start of your program, and if
successful you must call FreeAudio() before your program exits.

RESULT ErrorCode - NULL if successful or ERR_INUSE if unsuccessful.

SEE ALSO

Default 52 / 58

FreeAudio

1.72 games.library/FreeAudio

games.library/FreeAudio

NAME FreeAudio -- Free the audio channels for system use.

SYNOPSIS
FreeAudio()

void FreeAudio(void)

FUNCTION
Frees the audio channels so that the system can use them again.
You cannot make use of any of the audio channels after calling this
function.

SEE ALSO

AllocAudio

1.73 games.library/InitSound

games.library/InitSound

NAME InitSound -- Initialise a sound structure for the play routines.

SYNOPSIS
ErrorCode = InitSound(Sound)

d0 a0

ULONG InitSound(struct Sound *)

FUNCTION
This function will initialise a sound for use in the play routines.
Its main job is to load and assess the sound header, and fill in
any missing fields. It can also unpack sounds in some cases.

If the following fields in the Sound structure are detected as
being NULL, InitSound() will fill them in for you:

SAM_Data
SAM_Length
SAM_Period
SAM_Volume

If you don’t want some or all of these fields written too, simply
fill them in before-hand. This is imperative if the sound is in
RAW format, for obvious reasons.

Default 53 / 58

Lists are fully supported by this function, just pass a pointer to
a standard "LIST" structure instead of a Sound. (See Lists).

NOTE If the sound is in RAW format, then this function will have little
effect, so you should set most of the fields yourself.

INPUTS Sound - Pointer to a single sound structure, or for multiple
initialisations, a list of Sound’s.

STRUCTURE Sound,0
ULONG SAM_VERSION ;"SMV1"
APTR SAM_Stats ;Reserved.
UWORD SAM_Channel ;Channel
WORD SAM_Priority ;Priority
APTR SAM_Header ;Sample info header, if any.
APTR SAM_Data ;Address of sample data.
ULONG SAM_Length ;Length of sample data in WORDS.
UWORD SAM_Octave ;Octave/Note setting.
UWORD SAM_Volume ;Volume of sample (1 - 100).
ULONG SAM_Attrib ;Sound attributes.
APTR SAM_File ;The file for the sound.
LABEL SAM_SIZEOF

SAM_VERSION
The version of the structure, currently "SMV1".

SAM_Channel
The channel that you want to play through. Acceptable channel
numbers are 0, 1, 2 and 3 (a total of 4 available channels).

SAM_Priority
The priority of your sound goes here. This field is used by the
PlaySoundPri() function to determine if your sound should be played
when the channel is busy. Naturally, higher values are played over
samples with lower values.

SAM_Header
Points to the very start of the sample, which in most cases will be
the something like an IFF 8SVX header. If the sample data is RAW
then simply point to the start of the data here.

SAM_Data
This field points to the actual data that is going to be played.
Init_Sound() will fill this field in for you if you initialise it
to 0.

SAM_Length
The length of the sample data in words. This field will be filled
in for you if the sound has a recognised header (eg IFF).

SAM_Octave
The octave at which to play this sample. The highest pitched value
is OCT_G0S, the lowest is OCT_A7S. There are about 94 available
settings, see games/sound.i to look at the complete list.

SAM_Volume

Default 54 / 58

The volume of the sound, which lies in the range 0 - 100. A volume
of zero will not be heard, a volume of 100 is the loudest.

SAM_Attrib
Specifies the attributes for the sound.

SBIT8 - Sound data is 8 bit (only set this if raw).

SBIT16 - Sound data is 16 bit (only set this if raw).

SMODVOL - Modulates the volume with the next channel.

SMODPER - Modulate the sound’s period with the next channel.

SREPEAT - Repeats the sample forever.

SAM_File
If your sound is contained on disk, place a pointer to the filename
here. This will cause InitSound() to load the sound data in for
you (via a call to SmartLoad()) and fill in the Header and Data
fields. The rest of the initialisation procedure will then be
carried out.

SEE ALSO

FreeSound

1.74 games.library/FreeSound

games.library/FreeSound

NAME FreeSound -- Free any allocations made in an initialised sound.

SYNOPSIS
FreeSound(Sound)

a0

void FreeSound(struct Sound *)

FUNCTION
Frees any allocations made in the initialisation of a Sound
structure. You have to call this function at some point for every
initialised Sound, otherwise resources may be withheld on the exit
of your program.

This function is fully supportive of LIST’s.

INPUTS Sound - Pointer to an intialised sound structure.

SEE ALSO

InitSound

Default 55 / 58

1.75 games.library/CheckChannel

games.library/CheckChannel

NAME CheckChannel -- Checks the current activity of a sound channel.

SYNOPSIS
Status = CheckChannel(Channel)

d0 d0.w

UWORD CheckChannel(UWORD Channel)

FUNCTION
Checks the specified channel to see if it has any data playing
through it.

INPUTS Channel - Either 1, 2, 3 or 4.

RESULT Status - The current status of the channel, a result of NULL
indicates that the channel is free. A result of 1 indicates that
the channel is busy.

1.76 games.library/PlaySound

games.library/PlaySound

NAME PlaySound -- Play a sound through an audio channel.

SYNOPSIS
PlaySound(Sound)

a0

void PlaySound(struct Sound *)

FUNCTION
Plays a sound according to the settings in the sound structure.
This function executes immediately, and ignores all channel/sound
priorities.

You must have initialised the sound structure before calling this
function.

INPUTS Sound - Pointer to a valid sound structure.

SEE ALSO
PlaySoundDACx, PlaySoundPri, PlaySoundPriDACx

1.77 games.library/PlaySoundDACx

games.library/PlaySoundDACx

NAME PlaySoundDACx -- Play a sound ignoring the setting in SAM_Channel.

Default 56 / 58

SYNOPSIS
PlaySoundDACx(Sound)

a0

void PlaySoundDACx(struct Sound *)

Where ’x’ is either 1, 2, 3 or 4, which is a direct reference to
the channel number.

FUNCTION
DAC stands for Direct Access to Channel. This is the fastest way
to play a sound as it goes directly to that channel’s sound
routine, but it is not very easy to work with. This function
exists for intelligently changing from full channel access for
sound effects, to one channel access while music is playing.

When setting up your sounds you should make sure that you use all
four channels in your structures. If the music is off, use the
normal PlaySoundPri() function. If the music is on, and if it uses
all but one of the channels, use this function to re-route all the
sound effects through the spare channel.

NOTE This function ignores sound priorities, and will play the sound
regardless of wether the channel is busy or not.

INPUTS Sound - Pointer to a valid sound structure.

SEE ALSO
PlaySound, PlaySoundPri, PlaySoundPriDACx, games/games.i

1.78 games.library/PlaySoundPriDACx

games.library/PlaySoundPriDACx

NAME PlaySoundPriDACx -- Play a sound ignoring the setting in SAM_Channel.

SYNOPSIS
PlaySoundPriDACx(Sound)

a0

void PlaySoundPriDACx(struct Sound *)

Where ’x’ is either 1, 2, 3 or 4, which is a direct reference to
the channel number.

FUNCTION
DAC stands for Direct Access to Channel. This is the fastest way
to play a prioritised sound as it goes directly to that channel’s
sound routine, but it is not very easy to work with. This function
exists for intelligently changing from full channel access for
sound effects, to one channel access while music is playing.

When setting up your sounds you should make sure that you use all
four channels in your structures. If the music is off, use the

Default 57 / 58

normal PlaySoundPri() function. If the music is on, and if it uses
all but one of the channels, use this function to re-route all the
sound effects through the spare channel.

This function supports prioritisation of sound effects.

INPUTS Sound - Pointer to a valid sound structure.

SEE ALSO
PlaySoundDACx, PlaySound, PlaySoundPri, games/games.i

1.79 games.library/PlaySoundPri

games.library/PlaySoundPri

NAME PlaySoundPri -- Play a sound if it can equal or better a channel’s
priority.

SYNOPSIS
PlaySoundPri(Sound)

a0

void PlaySoundPri(struct Sound *)

FUNCTION
Plays a sound according to the settings in the sound structure, IF
it equals or betters the channel’s current priority setting.

Prioritisation of sounds allows you to play sound effects according
to their importance. Make sure that you take care in ordering your
sounds so that they play effectively!

It is recommended that you use CHANNEL_ALL in the SAM_Channel field
so that your game makes maximum use of all the available sound
channels.

INPUTS Sound - Pointer to a valid sound structure.

SEE ALSO
PlaySound, PlaySoundPriDACx, PlaySoundDACx, games/games.i

1.80 games.library/

games.library/

NAME

SYNOPSIS

FUNCTION

INPUTS

Default 58 / 58

RESULT

SEE ALSO

	Default
	games.library
	games.library/Init_GPI
	games.library/Remove_GPI
	games.library/Read_Mouse
	games.library/Read_JoyPort
	games.library/Read_JoyStick
	games.library/Read_Analogue
	games.library/Read_JoyPad
	games.library/Read_SegaPad
	games.library/Read_Key
	games.library/FastRandom
	games.library/SlowRandom
	games.library/Wait_LMB
	games.library/Wait_Fire
	games.library/Wait_Time
	games.library/Wait_VBL
	games.library/Wait_OSVBL
	games.library/Wait_RastLine
	games.library/Add_InputHandler
	games.library/Rem_InputHandler
	games.library/Add_Interrupt
	games.library/Rem_Interrupt
	games.library/SmartLoad
	games.library/QuickLoad
	games.library/SmartUnpack
	games.library/SmartSave
	games.library/SetUserPri
	games.library/SetGMSPrefs
	games.library/LoadPic
	games.library/UnpackPic
	games.library/GetPicInfo
	games.library/AllocMemBlock
	games.library/FreeMemBlock
	games.library/Add_Screen
	games.library/Delete_Screen
	games.library/Show_Screen
	games.library/Hide_Screen
	games.library/ReturnToOS
	games.library/AutoOSReturn
	games.library/SwapBuffers
	games.library/Remake_Screen
	games.library/Move_Picture
	games.library/Reset_Picture
	games.library/B12_FadeToBlack
	games.library/B12_FadeToWhite
	games.library/B12_FadeToPalette
	games.library/B12_FadeToColour
	games.library/24BIT_FadeToBlack
	games.library/24BIT_FadeToWhite
	games.library/B24_FadeToPalette
	games.library/B24_FadeToColour
	games.library/Change_Colours
	games.library/Blank_Colours
	games.library/Init_RasterList
	games.library/Update_RasterList
	games.library/Update_RasterLines
	games.library/Update_RasterCommand
	games.library/Update_RasterCommands
	games.library/Remove_RasterList
	games.library/Hide_RasterList
	games.library/Show_RasterList
	games.library/Init_Sprite
	games.library/Update_Sprite
	games.library/Move_Sprite
	games.library/Hide_Sprite
	games.library/Update_SpriteList
	games.library/Hide_SpriteList
	games.library/Remove_AllSprites
	games.library/Return_AllSprites
	games.library/
	games.library/AllocAudio
	games.library/FreeAudio
	games.library/InitSound
	games.library/FreeSound
	games.library/CheckChannel
	games.library/PlaySound
	games.library/PlaySoundDACx
	games.library/PlaySoundPriDACx
	games.library/PlaySoundPri
	games.library/

